Equivalent definition of Riemann integrability

Definition 0.1. $f : [a,b] \to \mathbb{R}$ is said to be Riemann integrable if $\exists L \in \mathbb{R}$ such that for any $\dot{\mathcal{P}}$ satisfying $||\dot{\mathcal{P}}|| < \delta$,

$$|\sum_{j} f(t_j) \,\Delta x_j - L| < \epsilon$$

where $t_j \in [x_j, x_{j+1}]$ are the tags.

Theorem 0.2. (See textbook) If $f \in R[a, b]$, then f is bounded.

Alternative approach:

For bounded function $f : [a, b] \to \mathbb{R}$, for any Partition \mathcal{P} , define

$$U(f, \mathcal{P}) = \sum_{j} M_j \ \Delta x_j, \ L(f, \mathcal{P}) = \sum_{j} m_j \ \Delta x_j$$

where $M_j = \sup\{f(x) : x \in [x_j, x_{j+1}]\}, m_j = \inf\{f(x) : x \in [x_j, x_{j+1}]\}.$

Lemma 0.3. We have for any partition $\mathcal{P}_1, \mathcal{P}_2$, we have

$$L(f, \mathcal{P}_1) \le U(f, \mathcal{P}_2).$$

In particular, we have for any partition \mathcal{P} ,

$$L(f,\mathcal{P}) \leq \sup_{\mathcal{P}} L(f,\mathcal{P}) = \underline{\int_a^b} f \leq \overline{\int_a^b} f = \inf_{\mathcal{P}} U(f,\mathcal{P}) \leq U(f,\mathcal{P}).$$

Proof. By considering the new partition $\mathcal{P}_1 \cup \mathcal{P}_2$ and apply the monotonicity of $U(f, \mathcal{P})$ and $L(f, \mathcal{P})$.

Definition 0.4. For bounded function $f : [a, b] \to \mathbb{R}$, f is said to be integrable if there exists unique $A \in \mathbb{R}$ such that

$$L(f, \mathcal{P}) \le A \le U(f, \mathcal{P}).$$

Or equivalently,

$$\underline{\int_{a}^{b}} f = \overline{\int_{a}^{b}} f.$$

Lemma 0.5. For bounded function $f : [a, b] \to \mathbb{R}$, f is integrable if and only if $\forall \epsilon > 0$, $\exists \mathcal{P}$ such that

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) < \epsilon.$$

Proof. It is clear from the definition of \sup , inf and lemma 0.3.

The above two definitions are equivalent. By cauchy criterion in textbook, it suffices to show the followings. (In particular, $L = \int_a^b f = \underline{\int_a^b} f = \overline{\int_a^b} f$.)

Theorem 0.6. For bounded function $f : [a, b] \to \mathbb{R}$, f is integrable if and only if $\forall \epsilon > 0$, $\exists \delta > 0$ such that

$$U(f,\mathcal{P}) - L(f,\mathcal{P}) < \epsilon$$

whenever $||\mathcal{P}|| < \delta$.

Proof. The "if" part is trivial.

Let M > 0 such that $|f| \leq M$. Let $\epsilon > 0$ be given, suffices to find the corresponding $\delta > 0$. By assumption, $\exists \tilde{\mathcal{P}}$ such that

$$U(f, \tilde{\mathcal{P}}) - L(f, \tilde{\mathcal{P}}) < \epsilon/2.$$

Say $\tilde{\mathcal{P}}$: $a = x_0 < x_1 < ... < x_N = b$. Choose $\delta > 0$ such that $\delta < \min\{\Delta x_1, \Delta x_2, ... \Delta x_N, \epsilon/8MN\}$. For any partition \mathcal{P} such that $||\mathcal{P}|| < \delta$, $\mathcal{P}: y_0 = a < y_1 < ... < y_n = b$,

$$\sum_{i} (M_{i} - m_{i}) \Delta y_{i} = \sum_{[y_{i}, y_{i+1}] \subset [x_{j}, x_{j+1}] \text{for some j}} (M_{i} - m_{i}) \Delta y_{i}$$
$$+ \sum_{x_{j} \in [y_{i}, y_{i+1}] \text{for some j}} (M_{i} - m_{i}) \Delta y_{i}$$
$$\leq U(f, \tilde{\mathcal{P}}) - L(f, \tilde{\mathcal{P}}) + 2MN \cdot ||\mathcal{P}||$$
$$< \epsilon/2 + 2MN \cdot \frac{\epsilon}{8MN} < \epsilon.$$

Example 0.7. Let $g: [0,1] \to \mathbb{R}$ be a continuous function. Let $f: [0,1] \to \mathbb{R}$ such that

$$f(x) = 1$$
 if $x = y_n = 1/n$,
 $f(x) = g(x)$ otherwise.

Then f in integrable.

Proof. Since g is continuous on closed and bounded interval. g is bounded, and so is f. Let M > 0 such that

$$|f(x)| < M.$$

Let $\epsilon > 0$ be given. There exists $N = N(\epsilon) \in \mathbb{N}$ such that $1/n < \epsilon/8M$ for all n > N. Choose $x_0 = 0, x_1 = \epsilon/8M$. Thus,

$$\frac{1}{n} \in [x_0, x_1], \quad \forall n > N.$$

Noted that there are only finitely many y_n outside $[x_0, x_1]$. By continuity of g, there exists $\delta' > 0$ such that whenever $|x - y| < \delta'$, $|g(x) - g(y)| < \epsilon/2$. Choose $\delta > 0$ such that $\delta < \delta'$ and $\delta < \epsilon/8MN$. Choose a partition on $[x_1, 1]$ such that $||\mathcal{P}|| < \delta$. Glue \mathcal{P} and $[x_0, x_1]$ to

form a partition \mathcal{Q} on [0,1]. We have

$$U(f, \mathcal{Q}) - L(f, \mathcal{Q}) = \sum_{j} (M_j - m_j) \Delta x_j$$

$$\leq \left(\sum_{[x_j, x_{j+1}] \ni y_k} + \sum_{y_k \notin [x_j, x_{j+1}]} \right) (M_j - m_j) \Delta x_j$$

$$\leq 2M \cdot (x_1 - x_0) + 2MN\delta + \sum_j \Delta x_j \cdot \epsilon/2$$

$$\leq \epsilon \cdot \left(\frac{2M}{8M} + \frac{2MN}{8MN} + \frac{1}{2} \right) = \epsilon.$$

L		